
U n i v e r s i t y o f C a l i f o r n i a L a w r e n c e L i v e r m o r e N a t i o n a l L a b o r a t o r y

estimate of the frequency of each event
over a specified measurement period.
MPX technology has been integrated
into the Performance API toolkit, devel-
oped at the University of Tennessee
(PAPI, http://icl.cs.utk.edu/projects/papi/).

Tool Gear is software infrastructure
that provides common services to tools
like MPX and mpiP
(http://www.llnl.gov/asci/projects/asde/
toolgear.html). These services include
source code navigation, dynamic
instrumentation, data collection, and
data display. Analysis tools focus on
gathering data, and Tool Gear focuses
on managing and presenting the data
and also on user interactions (Figure 2).
Tool Gear uses IBM’s Dynamic Probe
Class Library (DPCL), which lets tools
insert instrumentation into a running
program without the need for re-compi-
lation or re-linking. Together, Tool Gear
and DPCL offer a flexible combination

UCRL-TB-145830-Rev. 1 URL: http://www.llnl.gov/CASC/sections.html/

(http://www.llnl.gov/CASC/mpx/).
Performance data (such as requests to
load data, cache misses, and floating
point operations) can help program-
mers tune their codes to improve cache
utilization or balance workload among
processors. Unfortunately, hardware
counters have somewhat limited func-
tionality, since each counter is often
designed to measure only a subset of
the countable events on a CPU. Often,
a combination of measurements is
required to gain performance insights;
for example, estimating cache utiliza-
tion requires both the number of cache
misses and the number of load
requests. When hardware limitations
prevent concurrent counting of hard-
ware events, MPX uses time slicing,
which directs the hardware registers to
measure each event type in turn for a
period of time. Using these measure-
ments, MPX computes an accurate

The Parallel Performance Improvement
(PPI) effort is a collection of projects
that are developing ways to improve
the efficiency of parallel programs. We
are investigating both performance
analysis tools and system-level tech-
niques for improving performance.

Performance Analysis
Optimizing the performance of a par-

allel program requires attention to CPU
utilization, memory subsystem utiliza-
tion, communication efficiency, and
other areas. Lawrence Livermore
National Laboratory (LLNL) has devel-
oped tools to help developers investigate
a variety of performance parameters.

The mpiP tool (Vetter and
McCracken, 2001), for example, shows
users how communication performance
scales with increasing numbers of
processors, and it offers information at
varying levels of detail: categories of
MPI functions (e.g., collective opera-
tions); specific MPI functions (e.g., all
uses of MPI_Allreduce); and specific call
sites (e.g., a call to MPI_Allreduce at a
particular line of a particular file). These
levels of detail enable users to see a
general overview of communication
performance and then zoom in to find
specific problem areas. The mpiP tool
gathers data from a whole program run
without significantly slowing its execu-
tion, even when the program executes
on 1000 processors or more (Figure 1).

Another tool, MPX (May, 2001),
gathers statistics from CPU hardware
performance counters

Parallel
Performance
Improvement

Center for Applied Scientific Computing

Figure 1.The mpiP tool shows how much time various MPI calls take as the number of tasks
increases. Steep increases indicate possible scaling problems.

Allreduce:timing.c:419
Allreduce:struct_innerprod.c:107
Waitall:coarsen.c:542
Waitall:coarsen.c:491
Type_free:communication.c:1405
Type_free:communication.c:1413

1e+9

1e+8

1e+7

1e+6

1e+5

1e+4

1e+3

1e+2

1e+1

1e+0

1e—1
1 10

Number of tasks

A
gg

re
ga

te
 ti

m
e

(m
ill

is
ec

s)

100 1000

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Parallel Performance Improvement

of features that simplify the process of
creating sophisticated performance
analysis and debugging tools.

The ultimate goal is to develop
tools like the one in Figure 2, which
gathers cache utilization and FLOP
rate data from hardware performance
counters. The user can select specific
portions of the program to instrument
while the program is running, with
no need to compile or link special
libraries into the application.

LLNL has used these and other tools
(such as the Sphinx parallel
microbenchmark suite,
http://www.llnl.gov/CASC/sphinx/sphinx
.html) to gather a wealth of data on the
performance characteristics of several
scientific applications.

Performance Tuning
The other goal of PPI is to develop

system-level techniques for improv-
ing the performance of applications.
We are examining patterns of mem-
ory accesses that programs generate

and are developing techniques for
handling these accesses more effi-
ciently within memory subsystems.
While standard caching methods
work well when programs access the
same data items repeatedly or in
strict sequential order, many scien-
tific codes access data in strided
patterns or in other complex ways.
We have developed tools to measure
and characterize the memory access
patterns of a program (Mohan, et al.,
2001, and Parker, et al., 2001).

Collaborations
LLNL works with many acade-

mic partners and vendors on
performance analysis and tuning.
We currently fund academic part-
ners at the Universities of
Maryland, Oregon, Tennessee, and
Wisconsin, and at Portland State
University and North Carolina
State University. Vendor partners
include IBM, MPI Software
Technology, KAI, Pallas, and Etnus.

LLNL also has many ongoing col-
laborations with other major
universities, vendors, and national
laboratories. LLNL is a participant
in the Performance Evaluation
Research Center, funded by the
Department of Energy’s Scientific
Discovery through Advanced
Computing (SciDAC) initiative.

Funding
Individual projects in PPI receive

funding from a variety of sources,
including ASCI Simulation
Development Environments program
(ASDE) and the Department of Energy’s
SciDAC program.

References
J.S. Vetter and M.O. McCracken,

“Statistical Scalability Analysis of
Communication Operations in
Distributed Applications,” Proc. ACM
SIGPLAN Symp. on Principles and
Practice of Parallel Programming
(PPOPP), 2001.

J.M. May, “MPX: Software for
Multiplexing Hardware Performance
Counters in Multithreaded Programs,”
Int. Parallel & Distr. Processing Sym.
(IPDPS), 2001.

T. Mohan, B.R. de Supinski, S.A.
McKee, F. Mueller, and A. Yoo,
“Dynamic Detection of Streams in
Memory References,” SC 2001,
Denver, CO, November 10-16, 2001.

E. Parker, B.R. de Supinski, and D.J.
Quinlan, “Measuring the Regularity of
Array References,” SC 2001, Denver,
CO, November 10-16, 2001.

For more information:

John May, johnmay@llnl.gov;
Bronis de Supinski, bronis@llnl.gov; or
Jeffrey Vetter, jv@llnl.gov

Figure 2.The Tool Gear infrastructure can be used to develop tools like this one, which gathers
cache utilization and FLOP rate data from hardware performance counters.The user can select
specific portions of the program to instrument while the program is running, with no need to
compile or link special libraries into the application.

